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Antenna Systems for UAVs
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Antennas are required for a wide variety of UAV systems 
• Antenna requirements depend on the specific platform and mission:

> Radar/Electronic Warfare
> Communications
> Data links
> GPS/geolocation
> Other sensors (biological, 
    chemical, etc.)

• Ground station antennas
   not addressed here

UAV 

GROUND
STATION

OBSTRUCTIONS 

RANGE



3

         UAV Antenna Issues    
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• For airborne applications:
> Size, weight, power consumption
> Power handling
> Location on platform and required field of view (many systems 
    compete for limited real estate)
> Many systems operating over a wide frequency spectrum
> Isolation and interference
> Reliability and maintainability
> Radomes (antenna enclosures or covers)

• Accommodate as many systems as possible to avoid operational restrictions
• Signatures must be controlled: radar cross section (RCS), infrared (IR),
   acoustic, and visible (camouflage)
• New architectures and technologies are being applied to UAVs
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      Antenna Performance Measures    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California
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• Gain, rule of thumb:
       > A = area, λ = wavelength
         >  e = efficiency (0 < e < 1)
• Field of view or beamwidth 
   > usually half power, HPBW,     
• Polarization
• Sidelobe level 

> maximum 
> average

• Antenna noise temperature,
• Operating bandwidth 

> instantaneous 
> tunable

• Radar cross section 
> in band 
> out of band
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“New” Antenna Technologies for 
UAV Applications    

 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Some “new” concepts have been around since the 1960s, but have only
   recently become practical due to advances in computers and micro devices
• New technologies and architectures include:
  > Solid state (active antennas) > Adaptive
  > Conformal > Reconfigureable
  > Smart antennas > Multiple beams

(“smart skins” or “living skins”) > Photonics
  > Superconductivity > Digital beamforming

 > Genetic algorithms > Fractal antennas
  > Wide band (shared apertures)
  > Frequency selective devices and surfaces
  > New and exotic materials

Note: Most of these terms are not precisely defined and they are not mutually exclusive.  An antenna can
fall into multiple categories.
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  Antenna Installation Options
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• The choice may limit operation of the
   system or degrade its performance
• Externally mounted

> structural/environmental stress
> if non-retractable, always in view
> if retracted, system unusable

• Conformal surface mounted
> aerodynamic (low profile)
> curvature complicates design
   and manufacture

• Radome enclosures
> controlled environment
> inefficient use of volume
> radome loss
> wider field of view (FOV)
> includes “pods”
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       Motivation for Wide Bandwidth    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Bandwidth is the range of frequencies
   over which the antenna has “acceptable”
   performance
• Trend is toward wide band wave forms
  > low probability of intercept

> frequency hopping
> multiple channels (i.e., orthogonal
   frequency division multiplexing)
> high resolution and data rates

• Shared aperture (multi-mission) antenna:
   a single antenna used for all EM sensors
   (radar, EW, comms, etc.)
 

Bandwidth,

Center frequency, ( ) 2/LHo fff +=
LH ffB −=

• Definitions (not standardized)
 > narrow band: < 2%
    > wide band: 2-10%

> ultra wide band: > 10%
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  Wide Bandwidth Approaches    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Single radiating structure that operates over the entire
  frequency band

• Collection of nested or integrated 
   narrow band antennas
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    Frequency Selective Surfaces (FSS)    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California
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• Example of a 
   FSS element
   (tripoles)

• Band-stop frequency characteristic 

• Applications: 
> stealth -- shield antennas at high out of band frequencies
> antennas -- reflector antennas; array ground planes (below)
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           Multiple Beams    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Multiple beams share the same aperture (they exist simultaneously)
• Cover large spatial volumes quickly
• Receiver on each beam 
  (increases the system 
   bandwidth)
• Beam coupling losses
•  Increased complexity 
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       Active vs. Passive Antenna    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Receive architecture

• Can be applied to transmit antennas using power amplifiers
• Transmit and receive channels are packaged together to form T/R modules
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       Digital Beamforming (DBF)    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California
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       Digital Beamforming (DBF)    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Direct conversion to baseband is preferred, but high speed A/Ds are
  a problem
• Receive channel: (down conversion using two mixing stages)
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             Conformal Antennas    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California
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• Conformal antenna apertures conform to the shape of the platform
• Typically applied to composite surfaces; the antenna beamforming network 
   and circuitry are interlaced with the platform structure and skin
• Can be active antennas with processing embedded (i.e., adaptive or “smart”)
• Self-calibrating and fault isolation (errors and failures detected and 
   compensated for or corrected)
• Can be re-configurable (portion of the aperture that is active can be changed)
• Infrared (IR) and other sensors can be integrated into the antenna
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• Elements in an array interact with each other (patterns of edge elements 
   deviate from those in the center)
• Example: 10 element array (element 1 is at edge; element 5 at center)

Individual dipole element H-plane 
patterns (infinite ground plane ) Infinite vs. finite ground plane

   Mutual Coupling
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California
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   Conformal Shapes    
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• Curvature must be considered in the design 
   process, or pattern distortion occurs
• Example below: finite ground plane, mutual 
   coupling included
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  Patch Antennas
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Lend themselves to printed circuit fabrication techniques
• Low profile - ideal for conformal antennas
• Circular or linear polarization determined by feed configuration
• Difficult to increase bandwidth beyond several percent
• Substrates support surface waves
• Lossy
• Feeding methods:
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True Time Delay for Wide Band Scanning    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• For wideband scanning the phase shifter must provide true time delay
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       Fiber Optic Beamforming    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Fiber optic beamforming architecture and T/R module
• Conversion loss from microwaves to light > 20 dB (as of 1998)

T/R module
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    Photonic Time Delay Phase Shifters
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California
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   Photonics for Reconfigurable Arrays
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

Low conductivity
semiconductor
σ ~ 10-2 S/m

LASER

Becomes high
conductivity region
σ ~ 104 S/m

� � � � � LASER

OUTPUT
OPTO-ELECTRONIC

SWITCH

ARRAY ELEMENTS

• High energy beams are
   used to produce conducting
   antenna-shaped regions (left)

• Laser excitation of the 
   switch activates a particular
   portion of the aperture (below)
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• Monolilthic microwave integrated circuit (MIMIC): All active and passive
  circuit elements, components, and interconnections are formed into the
  bulk or onto the surface, of a semi-insulating substrate by some deposition
  method (epitaxy, ion implantation, sputtering, evaporation, or diffusion)
• Technology developed in late 70s and 80s is now common manufacturing
   technique
• Advantages:   > Potential low cost

> Improved reliability and reproducibility
> Compact and lightweight
> Potentially broadband 
> Design flexibility and multiple functions on a chip

• Disadvantages:  > Unfavorable device/chip area ratios
> Circuit tuning not possible
> Troubleshooting is a problem
> Coupling/EMC problems

 > Difficulty in integrating high power sources

  MMIC    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California
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• Antennas with built-in multi-function capabilities and processing are often
  called smart antennas
• If they are conformal as well, they are known as smart skins
• Functions include:

> Self calibrating: adjust for changes in the physical environment
      (i.e., temperature)

> Self-diagnostic (built-in test, BIT): sense when and where faults or
      failures have occurred

• Tests can be run continuously (time scheduled with other system functions)
   or run periodically
• If problems are diagnosed, actions include:

> Limit operation or shutdown the system
 > Adapt to new conditions when processing, or reconfigure the antenna

               Smart Antennas    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California
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       T/R Module Concept    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Transmit and receive channels for each element are side by side
• Depth is a disadvantage, but module replacement easy
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• F-15 radar
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   T/R Tile Concept    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

From paper by Gouker, Delisle and
Duffy, IEEE Trans on MTT, vol 44,
no. 11, Nov. 1996

• Low profile
• A point failure requires that the entire
   tile be replaced
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   Radomes    
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1. beam pointing error from refraction by the radome wall
2. gain loss due to loss in the radome material and multiple reflections
3. increased sidelobe level from multiple reflections

• Radome must be transparent in the operating band
• Protects the antenna from the environment
• The antenna pattern with a radome will always be different than that without 
   a radome
• Radome effects on the antenna pattern:
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              Superconductivity    
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• Reduces loss in feed lines (as much as 25 dB for a 16 element array
  operating at 60 GHz)

• Makes possible “super-directive” arrays 
> gain much higher than expected for the given array area
> requires some feed lines to have very high current, and therefore 
   I2R losses are prohibitive in conventional conductors
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           Antenna Temperature    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Antenna noise temperature is specified in degrees Kelvin
• Indication of the noise power out of the antenna when no signal
  is present
• Depends on background radiation
• Especially important when very low signal power is expected
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       Example: Mini- and Micro-SAR    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

MiniSAR installed

http://www.imicrosensors.com/

• MicroSAR

• MiniSAR 
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            Vertical Takeoff UAV    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• USN VTUAV has multiple missions
• Use EM simulation codes to study

> antenna placement
> effect of nearby structure on patterns
> interference with other systems

VTUAV mesh model Pitch, roll, and yaw patterns
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              JSOW Captive Carry    
 Naval Postgraduate School              Department of Electrical & Computer Engineering                         Monterey, California

• Problems similar to a
   UAV

> blockage
> radome losses


